Adaptive Grazing and Relationship to Soil Health

Allen R Williams, Ph.D. Grass Fed Insights, LLC

Three Principles

Principle of Compounding
 Principle of Diversity
 Principle of Disruption

Conventional Grazing

Adaptive Grazing

Adaptive or Flex Grazing

Allows Practitioner to address multiple goals and objectives.

Not a routine or rigid system

Adapt to changing conditions

Principles of Adaptive Grazing

Goal Oriented

- Stock Density vs. Stocking Rate
- Management and flexibility are key
- Frequent Movement & Frequent Rest
- Plant Root System Recovery
- Highly reliant on temporary fencing technology
- Compounding & Cascading Effects

Regenerative Grazing Research Shows:

- Ecological function and profitability increase with increasing number of paddocks.
- Short periods of grazing with adequate recovery gave the greatest profit and ecological function.
- Adjusting grazing management with changing conditions increases ecological function and profitability.
- Fixed management protocols reduced benefits.
- Profitability decreases if recovery is too short or too long.
- Stocking rates can be increased without damaging ecological function as number of paddocks is increased

Teague et al. 2015. Journal of Environmental Management

What Does It Look Like?

100,000

1,000,000

Simulate Nature

Mimic Nature: Biomimcry/Ecomimcry

Nurtures Ecological Memory

Soil Carbon Cowboy Series

- Soil Carbon Cowboys 12 minutes; https://vimeo.com/80518559
- One Hundred Thousand Beating Hearts 15 minutes: <u>https://vimeo.com/170413226</u>
- A Fence and an Owner 9 1/2 minutes: <u>https://vimeo.com/201215707</u>
- During The Drought 12 minutes: <u>https://vimeo.com/200109813</u>
- Luckiest Places on Earth 25 minutes: <u>https://vimeo.com/181861077</u>
- Soil Carbon Curious 6 minutes: <u>https://vimeo.com/130721684</u>
- Next....."Givers and Takers"

Additional Resources

www.pastureproject.org

- Grass Fed Beef Decision Calculator
- PowerPoint Presentations
- "How -- To Video" series
- Webinars
- <u>http://www.stonebarnscenter.org/images/content/3/9</u>
 <u>/39629/Grassfed-MarketStudy-F.pdf</u>
- "Before You Have A Cow"
 - www.joyce-farms.com

Case Studies

Mississippi Farm

Case Study

Starting Point

Soil OM – 1.3% to 1.6%
Water Infiltration Rates – < ½ in/hr
Plant Brix – 2%
Major forage species – 3-4
Stocking Rate – 1 AU/6 acres

Implemented Strategy

 Bale Grazing 1st winter.
 High Stock Density/Short Duration Grazing.
 Long rest periods.
 Strategic use of microbial quorum sensing.

Year 3 Grazing Season

Progress

- Soil OM 5.2% to 5.6%
- Forage species 43, including natives.
- Plant Brix Avg 15 22%
- Water infiltration 10+ in/hr
- Stocking Rate 1 AU/1.5 acres.

FREE ACRES!!!

Significant increase in earthworms, soil level insects, pollinators, and wildlife.

Multi-Paddock Construction for Multiple Daily Moves

Allen's Fencing Rig

Keeping Cattle Out Of Ponds

Stockpiled Prairie

Moving Cows to Fresh Stockpile

South Carolina

Pompey's Rest Farm

Soil Destroyer to Soil Builder
 Dec. 2016 National GLCI Conference
 New Soil Carbon Cowboys film

 Givers & Takers

Kansas

Neighboring farms comparison - Farm 1: Corn/soybean rotation for 25+ years. No cover crops No-till last 10 years Center pivot irrrigation Grazes cornstalks every other year – set-stock High synthetic use TLMB = 730 ng/g

Farm 2

- Corn/soybean rotation until 2004.
- Conventional till & high synthetic use.
- Transitioned into eastern gammagrass, alfalfa, birdsfoot trefoil, chicory, clovers, several other plant species from latent seed bank.
- Started grazing in 2006.
- TLMB in 2014 = 3590 ng/g
- Significant mycorrhizal fungi population.
- Soil pits in 2014, 15, 16 Change in root depth and AMF tremendous. Soil C and OM significantly better at depth.
- Went from 4-6 inches topsoil in 2004 to 42 inches topsoil in 2016. Most significant changes in last three years since ramping up AMP grazing.

Alabama

South Central par of state
Black Belt Prairie
5300 acres
Organic Grains and cattle
Started Adaptive Grazing less than 2 years ago.
Started cover crops & No-Till 2 years ago.

Starting Point

Rolled Cover Crop – 10K+ Biomass

Soybeans drilled into 9 seed CC after roll down. Beans emerging through mat. Rolled 5/1/17. Picture taken 5/21/17

50 Bushel/Ac Organic Wheat

Add				Totals:		54%	66%	16%			\$ 23.75	ncree	ase Soll Org	anic Matte	
	Legumes	Rates:	Full	Mix	Туре	% Full Rate	% Wt	% Seeds	Seeds/lb	Cost/lb	Cost/Acre				
¢ s	Sunn Hemp:VNS 86.5	0	23	4.00	WS-B	17%	1196	6%	15,000.00	\$ 1.75	\$ 7.00	- 4	8.1		
• •	Cowpeas: Iron & Clay 85 •	0	63	15.00	WS-B	24%	4196	6%	4,100.00	\$ 0.80	\$ 12.00	Su	pplemental	10 Grazing	
¢ E	Black Cowpeas 85	0	38	5.00	WS-B	13%	1496	4%	7,700.00	\$ 0.95	\$ 4.75				
Add	Crease	-		Totals:	-	57%	24%	36%		_	\$ 9.60	1	9.6	10	
Aud	Grasses	Rates:	Full	Mix	Туре	% Full Rate	% Wt	% Seeds	Seeds/lb	Cost/lb	Cost/Acre		Nutrient Cy		
¢ P	Pearl Millet: Tifleaf III 87 🔹	0	19	3.00	WS-G	16%	8%	25%	80,000.00	\$ 1.10	\$ 3.30				
¢ F	orage Sorghum: GW-400 •	0	8	2.00	WS-G	25%	596	3%	16,000.00	\$ 0.65	\$ 1.30		6.5		
¢ e	Brachytic Dwarf BMR Sorg •	0	25	4.00	WS-G	16%	1196	8%	18,000.00	\$ 1.25	\$ 5.00	19		10	
Add	Brassicas		-	Totals:		25%	7%	47%			\$ 5.55	ī I			
	Diassicas	Rates:	Full	Mix	Туре	% Full Rate	% Wt	% Seeds	Seeds/lb	Cost/lb	Cost/Acre				
¢ ^	African Cabbage: VNS 66 ·	0	10	1.00	CS-B	1096	3%	19%	180,000.00	\$ 2.70	\$ 2.70				
¢ (Collards: Impact Forage 6(+	0	10	1.50	CS-B	15%	496	28%	175,000.00	\$ 1.90	\$ 2.85				
Add	Broadleaves			Totals:	-	10%	3%	1%			\$ 0.45				
	Divadicaves	Rates:	Full	Mix	Туре	% Full Rate	% Wt	% Seeds	Seeds/lb	Cost/lb	Cost/Acre				
¢ s	Sunflower: Black Oil seed · •	0	10	1.00	WS-B	10%	396	1%	8,000.00	\$ 0.45	\$ 0.45				
	nmary					Newl						Pound	Acre	Total	
1111						• E	Enable SmartMix Auto Adjust				Seed Cost Inoculant Cost		\$39.35 \$1,967.5 \$1.19 \$59.31		
	nde/Acres 26.50										moculante cost	+ 0.035		+	
Pou	nds/Acre: 36.50 eds/Acre: 954,500.0	0				50			Acres		Mixing Cost	\$ 0.08	\$ 3.07	\$ 153.30	

Tennessee

Coffee County, TN

Long Term No-Till on Left. Planted 2 weeks earlier. No Cover crop.

Planted into rolled down cover crop

What They Did

- Cover Crop 8 Seed Mix Cereal Rye, Winter Oats, Triticale, Winter Pea, Hairy Vetch, Crimson Clover, Daikon Radish, Canola
- Rolled down Early May. Planted into 20K+ standing biomass.
- C:N ratio > 30:1.
- Planted using a Roller and JD Air Seeder.
- Lost all fear of biomass. If we can get it on the ground we can plant.
- Less than 5.5 inches rain from planting until August. 55+ days with 90-98 temp.
- Cover Crop Field yield 215 bu/ac. No-Till yield 160 bu/ac.

Green Acres Research Farm: Cincinnati, Ohio

Chad Bitler, M.S. Agriculture Resource Coordinator (ARC) Email – cbitler@green-acres.org Direct – (513) 898-3159

Green Acres Research Farm: Cincinnati, Ohio

55 Days after planting - 8500 lbs/ac DM

- No fertilizer
- Steers gained >3.0
 lbs/day.
- 4500 lbs/ac DM 2nd

Grazing.

Chad Bitler, M.S. Agriculture Resource Coordinator (ARC) Email – cbitler@green-acres.org Direct – (513) 898-3159

Green Acres - Results

18 species warm season cocktail mix.

- SOM increased 3.6% to 4.4% in the 120 day grazing period A gain of 0.8%
- Added 20,000 gallons/ac water holding capacity.
- Over 100 acres that is 2 million gallons.
- Soil N increased 58 lbs/ac.
- Soil mineral value increased \$105/ac.
- Soil microbial activity increased 44%.
- Earthworms increased to >130,000/ac.

George Lake - Pennsylvania

- 2016 Forage and Grassland Council Presentation.
- Turned ground adjacent to an abandoned sand quarry into productive soil with cattle.
- 20+ years ago ground averaged 37 bushels of corn/acre, with side dressing.
- Corn Yields now in the 170's with no fertilization. Non-GMO Corn.
- Picture shows soil taken about 10 yards apart. The one sample has been mob grazed for about 20 years. The other sample is from the other side of the fence.
- Runs 600 head of grass fed beef and about 100 sheep.
- Host about 15 tours a year. Just hosted a delegation from the Ukraine.

Mob Grazed

Across Fence

North Dakota

Farm Comparisons

Farm 1:

- Organic operation that is very diverse in its cropping system.
- The operator grows spring wheat, barley, oats, corn, sunflowers, peas, soybeans, dry edible beans and alfalfa.
- Natural, organic fertilizers are used.
- No livestock or covers integrated.

Farm 2:

- No-till, low diversity. Operator plants only flax and spring wheat in rotation
- Anhydrous ammonia is used.
- Crop yields are average for the area.
- No livestock or covers.

Farm 3:

- No-till, medium diversity, high synthetic use.
- Grows corn, barley, sunflowers, spring wheat and soybeans.
- It has not been tilled for nearly twenty years.
- Yields are high but to get those yields high rates of synthetics are used.
- Fertilizers, fungicides, pesticides and amendments are all used.
- No livestock or covers.

Farm 4:

- No-Till since 1993.
- Grow corn, spring wheat, barley, oats, peas, cereal rye, winter triticale, and hairy vetch as our cash crops.
- All fields have a complex cover crop each year. Either before the cash crop, along with the cash crop or after the cash crop.
- No synthetic fertilizer since 2007. Do not use any purchased fertilizers, compost tea, or other soil amendments.
- Small amount of compost which is used on gardens.
- Livestock fully integrated onto cropland. Beef cow/calf pairs, stockers, grass finishers, sheep, pork, laying hens and bees, all are integrated throughout the ranch.

Haney Test Results - 2016

Management	N (Ibs/ac)	P (Ibs/ac)	K (Ibs/ac)	WEOC (PPM)
Organic, CT Farm 1	7	156	95	233
NT, LD Farm 2	27	244	136	239
NT, MD, HS Farm 3	37	217	199	262
NT, HD, NS, Lvst Farm 4	281	1006	1749	1095

CT = Conventional Tillage, NT – No-Till, LD = Low Diversity, MD = Moderate Diversity, HS = High Synthetics, NS = No Synthetics, Lvst = Livestock.

Las Damas Ranch Mexico

Background

Typical 11 inch rainfall region. - Last 4 years - 10", 9", 8", 5" inches. 5 years ago – monoculture of tobosagrass - Now = More than 4 dozen species..... Run 1 cow/calf per 40 acres. FREE ACRES!!! Neighbor ranch runs 1 cow/calf per 200 acres.

Luis Robles Ranch – Chihuahua, Mexico

Caterras Cattle Co. – Chihuahua, Mexico

Australia

Adaptive Grazing

Long-chain, nonlabile, stable carbon

Set Stock Grazing

Short-Chain, unstable, Labile carbon

Comparisons

Set-Stock:

- Decades of combining conventional cropping with set-stock grazing.
- Used a range of chemical fertilizers and herbicides.
- Accelerated soil C loss at depth.
- Biodiversity loss.
- Significant mineral loss.
- Increase in metabolic diseases.

Comparisons

Adaptive Grazing:

- No fertilizer in last 30 years.
- Levels of total and available plant minerals have improved significantly.
- Solubilization of mineral fraction by microbes.
 - Energized by increase in liquid carbon.
- Stable, long-chain, humic substances formed via plant-microbe sequestration pathway.
 - Cannot disappear in a drought.

68.2 tons more C sequestered per acre from 1990 – 2010 vs. Set-stock.

78% of new carbon was Stable, Non-labile.

Mineral increases:

– Ca – 277%, Mg – 138%, K – 146%, Su -157%, P – 151%, Zn

- 186%, Fe 122%, Cu 202%, B 156%, Se 117%.
- Mineral value increase: \$208/ac/yr

Carrying capacity doubled.

High N & P applications inhibit formation of plantmicrobe bridge.

BENEFITS

Does Grazing Strategy & Methodology Matter?

Soil Carbon Data

- Three types of farms/ranches sampled: - 2014 - 2015
 - Farm/ranch Type Descriptions:
 - AHSD/AMP Grazing for minimum of 5 years
 - High Level Conventional Grazing Management
 - CG Slow Rotation 10+ years minimum
 - Low Level Conventional grazing management
 - CG Continuous 10+ years
 - All same soil types

Soil Carbon Data

- Soil pits dug in random locations at each farm. Same topography.
- Each pit 3 feet deep and 3 feet square.
- Collected soil samples within every 6 inch section.
- Noted root growth and structure.
 Noted soil life, texture, aggregation.

Soil Carbon Data – Total Soil Carbon

Horizon	AHSD	CG - Rotation	CG – Cont.
1	4.67	1.64	1.36
2	4.00	1.88	1.37
3	2.95	1.03	0.40
4	2.04	1.02	0.54
5	1.71	0.38	0.40
6	1.42	0.41	0.34

Soil Carbon Data – Soil Organic Matter

Horizon	AHSD	CG - Rotation	CG – Cont.
1	4.26	3.28	2.72
2	3.22	3.76	2.74
3	3.10	2.06	0.80
4	2.98	2.04	1.08
5	2.80	0.76	0.80
6	1.98	0.82	0.68

Soil Carbon Data – Carbon Assessment Per Acre

Farm Descrip	Carbon (kg/sq meter	Carbon (Ton/ac)	Carbon (Ton CO2 Equiv)
AHSD	12.69	51.41	188.13
CG – Rotation	7.09	28.71	105.07
CG – Cont.	5.47	22.16	81.09

Can Make Rapid Improvements in Soil Organic Matter and Total Soil Carbon

Improvement in Soil Organic Matter Using AMP Grazing

Rebuilds Soil Microbial Biomass and Restores Microbial Balance

Building Microbial Biomass (ng/g of Soil)

New Soil Health Analytics

Quorum Labs, Eldorado, IL

- Complete Soil Bio-Profile
 - Active & Inactive fractions of soil microbes
 - Non-Sporulated & Sporulated
 - Individual microbial species specification & identification
 - Metagenomics, Proteogenomics, PCR, GC capabilities
- Haney Test
- Plant Tissue analysis
- Pathology
- Water Quality
- Affluent Testing

Protect Soil Temperatures

FLIR – Air Temp 96°

Indicator: Soil Temperature

- 1. At 70 °F, 100% of Soil moisture is used for growth.
- 2. At 100 °F, 85% of Soil moisture is lost and 15% is used for growth.
- 3. At 115 °F, microbes begin to breakdown, and
- 4. At 140 °F they die.

Even Manure Distribution

Manure Distribution

 \bigcirc

Rotation Frequency	Years to Get 1 Pile/sq. yard
Continuous	27
14 day	8
4 day	4 – 5
2 day	2
1 time a day	1

Indicators of Improved Soil Health

Insects/Arthropods

Earthworms

Dung Beetles

Figure 1. Cross section through dung pat depicting three nesting types:

Tunnelers I-A. *Phanaeus vindex* tunnel with single, soil-coated brood ball in single chamber; B. *Onthophagus* species tunnel with multiple brood masses; C. *Copris minutus* multiple brood balls; D. beetle excavating new tunnel (note subsurface soil is pushed through the dung pat crust)

Dwellers II-A. *Aphodius pseudolividus* eggs are laid singly or in groups inside dung pat; B. *Aphodius erraticus* bury dung under pat with eggs laid beside brood masses.

Rollers III-A. *Canthon pilularius* adult carving out dung into a ball; B. ball rolled a distance away from pat and buried shallowly.

Figure 3. Picture Guide to Dung Beetles Associated with NC Pastures Males are indicated by the symbol a and females Q Photographs by Matt Bertone

Aphodius erraticus

Size: 1/4-3/8"

Aphodius distinctus Size: 1/8-3/16"

Aphodius pseudolividus Geotrupes blackburnii

Onthophagus gazella (2) Size: 3/8-1/2"

Size: 3/8-3/4"

Onthophagus gazella (d) Size: 3/8-1/2"

Onthophagus hecate (♀) Size: 1/4-3/8"

30

Onthophagus gazella (3)

Size: 3/8-1/2"

Aphodius fimetarius

Size: 1/4-3/8"

Onthophagus gazella (\mathcal{Q})

Size: 3/8-1/2"

Onthophagus hecate (♂) Size: 1/4-3/8"

X

Onthopagus pennsylvanicus Onth Size: 1/8-1/4" S

Onthophagus taurus (♀) Onthoph Size: 1/4-3/8" Size

Onthophagus taurus (3) Size: 1/4-3/8"

 Onthophagus taurus (♂)
 Phanaeus vindex (♀)

 Size: 1/4-3/8"
 Size: 3/8-7/8"

he

Size: 3/8-7/8"

Phanaeus vindex (3) Size: 3/8-7/8"

Phanaeus vindex (d) Size: 3/8-7/8"

Canthon pilularius Size: 1/2-5/8"

Dichotomius carolimus Size: 3/4 – 1⁴/4"

Pronunciation guide: There are no common names of these beetles. To make their names easier to understand, a pronunciation guide is provided.

Aphodius distinctus: A-fo-di-us dis-tink-tuss Aphodius erraticus: A-fo-di-us e-rat-i-kus Aphodius fimetarius: A-fo-di-us fim-a-tary-us Aphodius granarius: A-fo-di-us gran-air-e-us Aphodius pseudolividus: A-fo-di-us sue-doe-liv-i-dus Canthon pilularius: Kan-thon pie-loo-lary-us Copris minutus: Koe-pris mi-nu-tus Dichotomius carolinus: Dik-o-tomee-us carolin-us Geotrupes blackburnii: Geo-troop-eze black-burny-eye Onthophagus gazella: On-tho-fa-gus ga-zell-a Onthophagus hecate: On-tho-fa-gus heck-ate Onthophagus pennsylvanicus: On-tho-fa-gus pen-sill-van-i-kus Onthophagus taurus: On-tho-fa-gus tore-us Phanaeus vindex: Fan-ny-us vin-dex (Rainbow beetle)

Increased Soil Aggregation

Illinois Grazing Trial

6 inches rain in two days.

2 inches rain night before

Penn State Trial

Compared 2-seed perennial mix vs. 5-seed mix

- 2-seed Orchardgrass & white clover
- 5-seed Orchardgrass, white clover, fescue, alfalfa, chicory
- 9 year trial
- Grazed treatment & control equally
- Advantages for 5-seed mix
 31% more forage DM production
 SOC down to 39 inches
 1.8 tons/ha in 5-seed
 - 0.5 tons/ha in 2-seed

Where Do Majority of Soil Microbes Live & Function?

Approximately 2/3 Of Your OM Increase Will Come From Roots!

Decrease drought impacts

% Leaf Volume Removed	% Root Grow Stoppage
10%	0%
20%	0%
30%	0%
40%	0%
50%	2-4%
60%	50%
70%	78%
80%	100%
90%	100%

Courtesy: R. Teague, TAMU

Desired Mix

Principle of Three

- Grasses
- Legumes
- Forbs

- Strive for minimum of three grasses, three legumes, and three forbs in mix, whether perennial or annual.

Warm Season Annuals

Cool Season Annuals

Why Complexity & Diversity?

Compounding & Cascading Effects

- Always occur Positive or negative?
- Secondary & Tertiary compounds
 - Dr. Fred Provenza & Others
- Diversity in microbial species
- Diversity in macroorganisms
- Exponential rather than linear
- "No effect or impact is singular"

Perennial Mix

Bromegrass, Orchardgrass, MeadowFescue, Tall Fescue, Bluegrass, Reeds Canary, Timothy, Natives, White Clover, Red Clover, Trefoil, Hairy vetch, Milk vetch, lespedezas, Sweet Clover, Tick Clover, Alfalfa, Sainfoin.... Chicory, Plantains (Narrrow & Broadleaf), Yarrow, Sheep's parsley, Burette, Dandelion, Docks,

Principle of Disruption

Flexibility is Key

Do NOT do things the same way every time!AMP/AHSD is NOT a system.

- Alter stocking densities
- Do not move through rotations in same pattern
- Alter grazing heights
- Alter rest periods
- Alter species order
- Alter time of season/year